• Home
  • CV
  • Publications
  • Research
    • Technologies
      • UHP generation
      • UHT generation
      • Homogeneous temperature
      • In situ X-rays observation
      • Rapid quench
    • Phase transitions
      • Akm-Brg transition and depression of D660
      • Sharp post-spinel transition
      • Post-spinel pressure
      • Binary ol-wd transition
      • Psp transition in Mg2SiO4
    • Mineral chemistry and structure
      • P dependence of Fe3+ in Brg Mg-rich
      • Brg is dry
      • T dependence of Fe3+ in Brg Mg-rich
      • Al in Brg at 3000 K
      • T dependence of MgAlO2.5
      • MgAlO2.5 vs bulk Mg/Si
      • Clustering of O vacancies
      • MgSiO3-Al2O3 at P-T
      • MgAlO2.5 in Brg with P
      • High H2O in Rw
      • H+ substitution mechanism in Fo
      • LiNbO3-type Mg3Al2Si3O12
      • LiNbO3-type (Mg,Fe3+)(Al3+,Si)O3
    • Melt
      • Zero-temperature gradient
      • Rapid quench
    • Electrical conductivity
      • H2O enhancement of ionic conductivity
    • Rheolgical properties
      • E-type slip
      • P-dependence of [100](010) and [001](010) dislocations
      • T-dependence of [100](010) and [001](010) dislocation mobility
      • Si and O diffusion mechanism
      • Si grain-boundary diffusion in Fo
      • H2O Effect of O diffusion in Fo
      • H2O effect on Si lattice diffusion in Fo
    • Thermoelastic properties
      • PVT measurement
      • Adiabatic temperature profile
      • Re-evaluation of T at D410
      • Adiabat
    • Developement of HPT technology
      • SPEED-Mk.II
      • Ultrahigh-pressure MAP
    • Material Science
  • Lecture Note
    • Mineral Physics 2021-22
    • Thermodynamics
      • 1st law and internal energy
    • Thermochemistry
      • G change of ideal gas with P
      • multi-comonent chemical potential
      • Standard pressure, single-component
      • Standard pressure, multi-component
      • High pressures, multi-component
    • Equation of state
      • What is EOS?
      • Isothermal EOS
      • Simplest EOS
      • Finite Strain
      • BM2 EOS
      • Proof a in BMEOS
      • BM3 EOS
      • Proof 3b/2a in BMEOS
      • Vinet EOS
      • Murnaghan EOS
      • Comparison of EOS's
      • Why squared length
      • Why not L but E
      • Thermal EOS
      • Thermal expansion
      • Path HC
      • Grüneisen parameter
      • Path CH
      • A-G parameter
    • Physics of the Earth's interior
    • Mineral Physics 2020
      • Background of thermodynamics
      • Heat capacity
      • Bulk modulus
      • Adiabat
      • Grüneisen paramter
      • Background for elasticity
      • Strain
      • Linear elasticity
      • Stress
      • Elastic constants of crystals
    • Geotherm Table
  • Home
  • CV
  • Publications
  • Research
    • Technologies
    • Phase transitions
    • Mineral chemistry and structure
      • P dependence of Fe3+ in Brg Mg-rich
      • Brg is dry
      • T dependence of Fe3+ in Brg Mg-rich
      • Al in Brg at 3000 K
      • T dependence of MgAlO2.5
      • MgAlO2.5 vs bulk Mg/Si
      • Clustering of O vacancies
      • MgSiO3-Al2O3 at P-T
      • MgAlO2.5 in Brg with P
      • High H2O in Rw
      • H+ substitution mechanism in Fo
      • LiNbO3-type Mg3Al2Si3O12
      • LiNbO3-type (Mg,Fe3+)(Al3+,Si)O3
    • Melt
    • Electrical conductivity
    • Rheolgical properties
    • Thermoelastic properties
    • Developement of HPT technology
    • Material Science
  • Lecture Note

Mineral chemistry and structure


Many mineral properties are controlled by composition and structure. It is therefore essential to study the chemistry and structures of mantle minerals. We synthesize high-quality samples, using which their chemistry and structures are investigated.


 Past studies

  • Bridgmanite
    • Oxygen vacancy substitution mechanism linked to ferric iron in bridgmanite with pressure [Fei et al., 2021]
    • Bridgmanite is nearly dry at the top lower mantle [Liu et al,  2021]
    • Oxygen vacancy substitution linked to ferric iron in bridgmanite at 27 GPa [Fei et al., 2020]
    • Aluminum solubility in bridgmanite up to 3000 K at the top lower mantle [Liu et al., 2020]
    • Increase of the oxygen vacancy component in bridgmanite with temperature [Liu et al., 2019a]
    • Strong correlation of oxygen vacancy in bridgmanite with Mg/Si ratio [Liu et al., 2019b]
    • Oxygen vacancy ordering in aluminous bridgmanite in the Earth’s lower mantle [Grüninger et al., 2019]
    • Maximum Al2O3 contents as a function of P and T [Liu et al., 2017]
    • P-dependence of MgAlO2.5 contents [Liu et al., 2017]
  • H2O
    • High H2O solubility in ringwoodite [Fei et al., 2020]
    • H+ substituion mechanism in Fo [Fei and Katsura, 2020]
  • Others
    • Synthesis of LiNbO3-type Mg3Al2Si3O12 [Ishii et al., 2017]
    • A new (Mg0.5Fe3+0.5)(Si0.5Al3+0.5)O3 LiNbO3-type phase synthesized at lower mantle conditions [Liu et al., 2019c]

Return to Research

 

Tomoo Katsura, Ph.D.

Professor of Structure and Dynamics of Earth Materials

Bayerisches Geoinstitut, University of Bayreuth
95440 Bayreuth, GERMANY
TEL: +49-921-55-3791
FAX: +49-921-55-3769
E-mail: tomo.katsura@uni-bayreuth.de

Joint affiliation

Distinguished visiting staff scientist

Center for High Pressure Science & Technology Advanced Research
Bldg. #8E, ZPark, 10 Xibeiwang East Rd, Haidian District, Beijing, 100094, China
E-mail: Tomoo.Katsura@hpstar.ac.cn

Visiting professor

Graduate School of Science and Faculty of Science, Tohoku University

6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan

About | Sitemap
Log out | Edit